Numerical Solution of Advection-Diffusion Equation Using Operator Splitting Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes

Three numerical methods have been used to solve the one-dimensional advection-diffusion equation with constant coefficients. This partial differential equation is dissipative but not dispersive. We consider the Lax-Wendroff scheme which is explicit, the Crank-Nicolson scheme which is implicit, and a nonstandard finite difference scheme (Mickens 1991). We solve a 1D numerical experiment with spe...

متن کامل

Numerical Solution of Advection-Diffusion Equation Using Preconditionar as Incomplete LU Decomposition and the BiCGSTAB Aceleration Method

In the present study, an advection-diffusion problem has been considered for the numerical solution. The continuum equation is discretized using both upwind and centered scheme. The linear system is solved using the ILU preconditioned BiCGSTAB method. Both Dirichlet and Neumann boundary condition has been considered. The obtained results have been compared for different cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal Of Engineering & Applied Sciences

سال: 2017

ISSN: 1309-0267

DOI: 10.24107/ijeas.357237